

45kVA~2000kVA
CE $\underset{\text { compliant }}{\text { RoHS }}$

Interfaces

Applications

O Laboratory/Certification Bureau
O Electric Vehicles
O Renewable Energy
O Motor \& Compressor

PAS Series

PAS Series product is developed for renewable energy related applications. It can simulate the various grid conditions and related test standards. Especially the voltage or frequency transient simulation test feature, it is very suitable for production, quality verification, research and development.It also builds in with Low Voltage Ride Through Test (LVRT) test function, step mode and gradual mode programmable capability.

PFV Series is a new generation of programmable AC power supply, with four quadrant energy feedback function.
This unit not only provides power to the EUT, but also sinks the power back to the grid system which is very useful for grid tie devices testing applications.
The maximum output power for PAS series is up to 2000 kVA , and the PFV series is up to 200kVA. The output voltage range is $0 \sim 300 \mathrm{VL}-\mathrm{N}$ and the standard output frequency is $45 \sim 65 \mathrm{~Hz}$ continuously adjustable (optional 40~70Hz).

Regenerative Function

PAS series is a four-quadrant AC power source which is capable to be a power source or sink the power from the EUT back to the grid system with 90% efficiency. It is suitable for PV Inverter test, EV charger test or other grid tie devices test.

Build in with Low Voltage Ride Through (LVRT) test graph and it is very suitable for IEEE-1547 or BDEW related standards compliance test.

Product Features

Low Voltage Ride Through (LVRT)

A Variety of Builtin Programmable Features

PAS/PFV series has a number of programmable features that can effectively and accurately simulate a variety of power abnormal conditions or disturbance. Through the built-in step and gradual mode, users can simulate voltage and frequency single-step or continuously changes, such as voltage and frequency ramp up/ ramp down, instantaneous changes, and so on. Phase angle and three phase independent adjustment function can be used for simulating three phase imbalance and further test the reliability of the EUT. With low voltage ride through and regenerative function, PAS series is suitable for PV Inverter, Bi-directional EV charger, Energy Storage System as an all purpose grid system simulator.

Model series	PAS	PFV	AFV
General Mode	\bigcirc	\bigcirc	\bigcirc
Step Mode	\bigcirc	\bigcirc	\bigcirc
Gradual Mode	\bigcirc	\bigcirc	\bigcirc
Soft Start Function	Δ	Δ	Δ
Three-phase independent adjustment	\bigcirc	\bigcirc	Δ
Phase Angle Setting	\bigcirc	\bigcirc	Δ
Low Voltage Ride Through (LVRT)	\bigcirc	-	-
Regenerative Function	\bigcirc	\bigcirc	-

SPECIFICATIONS

PFV Series \& PAS-F Series three-Phase Output (45kVA - 200kVA)

Model		$\begin{gathered} \text { PFV- } \\ 33045 \end{gathered}$	$\begin{aligned} & \text { PFV- } \\ & 33060 \end{aligned}$	$\begin{gathered} \text { PFV- } \\ 33075 \end{gathered}$	$\begin{aligned} & \text { PFV- } \\ & 33100 \end{aligned}$	$\begin{aligned} & \hline \text { PFV- } \\ & 33120 \end{aligned}$	$\begin{gathered} \text { PFV- } \\ 33150 \end{gathered}$	$\begin{gathered} \hline \text { PFV- } \\ 33200 \end{gathered}$
		$\begin{aligned} & \text { PAS-F- } \\ & 33045 \end{aligned}$	$\begin{aligned} & \text { PAS-F- } \\ & 33060 \end{aligned}$	PAS-F- 33075	$\begin{aligned} & \text { PAS-F- } \\ & 33100 \end{aligned}$	$\begin{aligned} & \text { PAS-F- } \\ & 33120 \end{aligned}$	$\begin{aligned} & \text { PAS-F- } \\ & 33150 \end{aligned}$	$\begin{aligned} & \text { PAS-F- } \\ & 33200 \end{aligned}$
INPUT								
Phase		$3 \varnothing / 4$ Wire + G						
Voltage ${ }^{-1}$		$380 \mathrm{~V} \pm 15 \%$						
Frequency		$47-63 \mathrm{~Hz}$						
Max. Current ${ }^{\text {2 }}$		86A	115A	150A	200A	240A	300A	400A
Power Factor		≥ 0.99 (Max. Power)						
OUTPUT								
Power	VA	45kVA	60kVA	75kVA	100kVA	120kVA	150kVA	200kVA
Phase		$3 \varnothing / 4$ Wire + G						
Voltage Ranges PFV Series	Low(V)	0V~150.0V (L-N)						
	High(V)	0V -300.0 V (L-N)						
Voltage Ranges PAS-F Series		0V -300.0 V (L-N)						
Voltage Resolution		0.1 V						
Voltage Accuracy		0.15\% F.S. +4 counts						
Frequency Range		Standard : $45 \sim 65 \mathrm{~Hz}$ Option : 40-70Hz						
Frequency Resolution		0.1 Hz						
Frequency Accuracy		$\pm 0.1 \%$ F.S						
Max. Current(RMS) PFV Series	Low(A)	125A	166.7A	208.3A	277.8A	333.3A	416.7A	555.6A
	High(A)	62.5A	83.3A	104.1A	138.9A	166.6A	208.3A	277.8A
Max. Current(RMS) PAS-F Series		62.5A	83.3A	104.1A	138.9A	166.6A	208.3A	277.8A
Line Regulation		< 1\%						
Load Regulation		< 1\% (Resistive Load)						
Total Harmonic Distortion (THD)		$\leqq 2 \%$ (Resistive Load)						
Response Time		$\leqq 2 \mathrm{~ms}$						
MEASUREMENT								
Voltage Range		0V-300.0V						
Voltage Resolution		0.1 V						
Voltage Accuracy		0.1\%F.S.+2 counts						
Frequency Range		Standard : $45 \sim 65 \mathrm{~Hz}$ Option : $40-70 \mathrm{~Hz}$						
Frequency Resolution		0.01 Hz						
Frequency Accuracy		$\pm 0.01 \%$ F.S.						
Current Range (RMS)		$0 \sim 9999$ A						
Current Resolution (RMS)		0.1A						
Current Accuracy (RMS)		0.1\% F.S.+2 counts						
Power Range		$0-400 \mathrm{~kW}$						
Power Resolution		0.1 kW						
Power Accuracy		0.2\% F.S.+2 counts						
GENERAL								
Regenerative Function		YES						
Low Voltage Ride Through (LVRT)		PAS Series : YES, PFV Series : NO						
Three-phase independent adjustment		YES						
Phase Angle Setting		YES						
Efficiency		$\geq 92 \%$ at Max. Power						
HMI		Touch Screen, 7" Color TFT LCD						
Protection		Input : Input N.F.B, Over Voltage, Under Voltage, Output : Over Voltage, Over Current, Reverse Current, Over Temperature						
Remote Interface		Standard : RS-485, RS-232 Option : GPIB, USB, Ethernet						
Opertional Temperature		$0^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$						
Humidity		0-90\% (Non condensing)						
Altitude		< 1,500 m						
Dimensions (Hx W x D		$2100 \times 1200 \times 800 \mathrm{~mm}$			$2100 \times 1600 \times 800 \mathrm{~mm}$			
		$82.67 \times 47.24 \times 31.49$ inch			$82.67 \times 62.99 \times 31.49$ inch			
Weight		1050kg	1185 kg	1485kg	1919kg	2300 kg	2700 kg	3400 kg
		2314.9lbs	2612.5lbs	3273.9lbs	4230.7lbs	5070.6lbs	5952.5lbs	7495.7lbs

[^0]
ORDERING INFORMATION :

PAS-F Series three-Phase Output (45kVA - 200kVA)

Model Number	Description
PAS-F 33045	Regenerative Grid Simulator (45kVA/300V/45-65Hz, Including LVRT Testing)
PAS-F 33060	Regenerative Grid Simulator (60kVA/300V/45-65Hz, Including LVRT Testing)
PAS-F 33075	Regenerative Grid Simulator ($75 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including LVRT Testing)
PAS-F 33100	Regenerative Grid Simulator (100kVA/300V/45-65H, Including LVRT Testing)
PAS-F 33120	Regenerative Grid Simulator (120kVA/300V/45-65Hz, Including LVRT Testing)
PAS-F 33150	Regenerative Grid Simulator (150kVA/300V/45-65Hz, Including LVRT Testing)
PAS-F 33200	Regenerative Grid Simulator (200kVA/300V/45-65Hz, Including LVRT Testing)
PAS-F 001	Soft Start Function
PAS-F 002	GPIB Interface
PAS-F 003	Ethernet Interface
PAS-F 004	USB Interface
PAS-F 005	Output Frequency $40-70 \mathrm{~Hz}$

PFV Series three-Phase Output (45kVA - 200kVA)

Model Number		Description
PFV-33045	High Power Programmable AC Power Source $(45 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33060	High Power Programmable AC Power Source $(60 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33075	High Power Programmable AC Power Source $(75 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33100	High Power Programmable AC Power Source $(100 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33120	High Power Programmable AC Power Source $(120 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33150	High Power Programmable AC Power Source $(150 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-33200	High Power Programmable AC Power Source $(200 \mathrm{kVA} / 300 \mathrm{~V} / 45-65 \mathrm{~Hz}$, Including Regenerative Function)	
PFV-001	Soft Start Function	
PFV-002	GPIB Interface	
PFV-003	Ethernet Interface	
PFV-004	USB Interface	

[^0]: ${ }^{*} 1$ Please contact for other voltage specification. *2 The rated input voltage is 380 V .

 * all specifications are subject to change without notice.

